Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2018

Characteristics of Sudden Commencements Observed by Van Allen Probes in the Inner Magnetosphere

We have statistically studied sudden commencement (SC) by using the data acquired from Van Allen Probes (VAP) in the inner magnetosphere (L = 3.0\textendash6.5) and GOES spacecraft at geosynchronous orbit (L =\~ 6.7) from October 2012 to September 2017. During the time period, we identified 85 SCs in the inner magnetosphere and 90 SCs at geosynchronous orbit. Statistical results of the SC events reveal the following characteristics. (1) There is strong seasonal dependence of the geosynchronous SC amplitude in the radial BV component at all local times. However, BV shows weak seasonal variation on the dayside in the inner magnetosphere. (2) The local time dependence of the SC amplitude in the compressional BH component at geosynchronous orbit is similar to that in the inner magnetosphere. (3) In a nightside region of L = 5.0\textendash6.5, \~19\% of BH events are negative, while \~58\% of BH events are negative at geosynchronous orbit. (4) The amplitude of the SC-associated Ey perturbations varies systematically with local time with a morning-afternoon asymmetry near noon. These observations can be explained by spatial and/or temporal changes in the magnetopause and cross-tail currents, which are caused by changes in the solar wind dynamic pressure, with respect to spacecraft positions.

Fathy, A.; Kim, K.-H.; Park, J.-S.; Jin, H.; Kletzing, C.; Wygant, J.; Ghamry, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017JA024770

Sudden commencement; Van Allen Probes

2017

SC-associated electric field variations in the magnetosphere and ionospheric convective flows

We examine magnetic and electric field perturbations associated with a sudden commencement (SC), caused by an interplanetary (IP) shock passing over the Earth\textquoterights magnetosphere on 16 February 2013. The SC was identified in the magnetic and electric field data measured at THEMIS-E (THE-E: MLT = 12.4, L = 6.3), Van Allen Probe-A (VAP-A: MLT = 3.2, L = 5.1), and Van Allen Probe-B (VAP-B: MLT = 0.2. L= 4.9) in the magnetosphere. During the SC interval, THE-E observed a dawnward-then-duskward electric (E) field perturbation around noon, while VAP-B observed a duskward E-field perturbation around midnight. VAP-A observed a dawnward-then-duskward E-field perturbation in the postmidnight sector, but the duration and magnitude of the dawnward E-perturbation are much shorter and weaker than that at THE-E. That is, the E-field signature changes with local time during the SC interval. The SuperDARN radar data indicate that the ionospheric plasma motions during the SC are mainly due to the E-field variations observed in space. This indicates that the SC-associated E-field in space plays a significant role in determining the dynamic variations of the ionospheric convection flow. By comparing previous SC MHD simulations and our observations, we suggest that the E-field variations observed at the spacecraft are produced by magnetospheric convection flows due to deformation of the magnetosphere as the IP shock sweeps the magnetopause.

Kim, S.-I.; Kim, K.-H.; Kwon, H.-J.; Jin, H.; Lee, E.; Jee, G.; Nishitani, N.; Hori, T.; Lester, M.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024611

electric field; Sudden commencement; Van Allen Probes



  1